Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Global Spine J ; : 21925682231200783, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698081

RESUMO

STUDY DESIGN: Cross-sectional database study. OBJECTIVE: The purpose of this study was to develop a successful, reproducible, and reliable convolutional neural network (CNN) model capable of segmentation and classification for grading intervertebral disc degeneration (IVDD), as well as quantify the network's impact on doctors' clinical decision-making. METHODS: 5685 discs from 1137 patients were graded separately by four experienced doctors according to the Pfirrmann classification. A ground truth (GT) was established for each disc in accordance with the decision of the majority of doctors. The U-net model is used for segmentation. 1815 discs from 363 patients were used to train and test the U-net. The Inception V3 model is employed for classification. All discs were separated into two distinct sets: 90% in a training set and 10% in a test set. The performance metrics of these models were measured. Reliability tests were performed. The impact of CNN assistance on doctors was assessed. RESULTS: Segmentation accuracy was .9597 with a .8717 Jaccard Index and a .9314 Sorensen Dice coefficient. Classification accuracy is .9346, and the F1 score is .9355. The intraclass correlation coefficient (ICC) and kappa values between CNN and GT were .95-.97. With CNN's assistance, the success rates of doctors increased by 7.9% to 22%. CONCLUSIONS: The fully automated network outperformed doctors markedly in terms of accuracy and reliability. The results of CNN were comparable to those of other recent studies in the literature. It was determined that CNN's assistance had a substantial positive effect on the doctor's decision.

2.
Curr Probl Cardiol ; 48(2): 101482, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336117

RESUMO

Treadmill Exercise Test (TET) results and patients' clinical symptoms influence cardiologists' decision to perform Coronary Angiography (CAG) which is an invasive procedure. Since TET has high false positive rates, it can cause an unnecessary invasive CAG. Our primary objective was to develop a machine learning model capable of optimizing TET performance based on electrocardiography (ECG) waves characteristics and signals. TET reports from 294 patients who underwent CAG following high risk TET were collected and categorized into those with critical CAD and others. The signal was converted to time series format. A dataset containing the P, QRS, and T wave times and amplitudes was created. Using this dataset, 5 machine learning algorithms were trained with 5-fold cross validation. All these models were then compared to the performance of cardiologists on V5 signal. The results from 5 machine learning models were clearly superior to the cardiologists' V5 signal performance (P < 0.0001). In addition, the XGBoost model, with an accuracy of 80.92±6.42% and an area under the curve (AUC) of 0.78±0.06, was the most successful model. Machine learning models can produce high-performance diagnoses using the V5 signal markers only as it does not require any clinical markers obtained from TET reports. This can lead to significant contributions to improving clinical prediction in non-invasive methods.


Assuntos
Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/diagnóstico , Teste de Esforço/métodos , Angiografia Coronária , Eletrocardiografia , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...